Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme
نویسندگان
چکیده
A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structure shapes the tertiary free-energy landscape of the Azoarcus ribozyme. We show that steric and connectivity constraints posed by secondary structure strongly limit the accessible conformational space of the ribozyme, and that these so-called topological constraints in turn pose strong free-energy penalties on forming different tertiary contacts. Notably, native A-minor and base-triple interactions form with low conformational free energy, while non-native tetraloop/tetraloop-receptor interactions are penalized by high conformational free energies. Topological constraints also give rise to strong cooperativity between distal tertiary interactions, quantitatively matching prior experimental measurements. The specificity of the folding landscape is further enhanced as tertiary contacts place additional constraints on the conformational space, progressively funneling the molecule to the native state. These results indicate that secondary structure assists the ribozyme in navigating the otherwise rugged tertiary folding landscape, and further emphasize topological constraints as a key force in RNA folding.
منابع مشابه
Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme.
Compact but non-native intermediates have been implicated in the hierarchical folding of several large RNAs, but there is little information on their structure. In this article, ribonuclease and hydroxyl radical cleavage protection assays showed that base pairing of core helices stabilize a compact state of a small group I ribozyme from Azoarcus pre-tRNA(ile). Base pairing of the ribozyme core ...
متن کاملMetal ion dependence of cooperative collapse transitions in RNA.
Positively charged counterions drive RNA molecules into compact configurations that lead to their biologically active structures. To understand how the valence and size of the cations influences the collapse transition in RNA, small-angle X-ray scattering was used to follow the decrease in the radius of gyration (R(g)) of the Azoarcus and Tetrahymena ribozymes in different cations. Small, multi...
متن کاملMolecular crowding overcomes the destabilizing effects of mutations in a bacterial ribozyme
The native structure of the Azoarcus group I ribozyme is stabilized by the cooperative formation of tertiary interactions between double helical domains. Thus, even single mutations that break this network of tertiary interactions reduce ribozyme activity in physiological Mg(2+) concentrations. Here, we report that molecular crowding comparable to that in the cell compensates for destabilizing ...
متن کاملMisfolding of the Azoarcus group I intron ribozyme 1 The Azoarcus Group I Intron Ribozyme Misfolds and Is Accelerated for Refolding by ATP-dependent RNA Chaperone Proteins*
Background: Group I introns are valuable for studying RNA folding and chaperone proteins. Results: A catalytic activity assay was developed and used to demonstrate two prominent phases for Azoarcus ribozyme folding. The slow phase displays hallmarks of a misfolded intermediate. Conclusion: This RNA accumulates a misfolded intermediate and interacts productively with RNA chaperones. Significance...
متن کاملHow do metal ions direct ribozyme folding?
Ribozymes, which carry out phosphoryl-transfer reactions, often require Mg(2+) ions for catalytic activity. The correct folding of the active site and ribozyme tertiary structure is also regulated by metal ions in a manner that is not fully understood. Here we employ coarse-grained molecular simulations to show that individual structural elements of the group I ribozyme from the bacterium Azoar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 44 شماره
صفحات -
تاریخ انتشار 2016